Liver disorder diagnosis using linear, nonlinear and decision tree classification algorithms

نویسندگان

  • Aman Singh
  • Babita Pandey
چکیده

In India and across the globe, liver disease is a serious area of concern in medicine. Therefore, it becomes essential to use classification algorithms for assessing the disease in order to improve the efficiency of medical diagnosis which eventually leads to appropriate and timely treatment. The study accordingly implemented various classification algorithms including linear discriminant analysis (LDA), diagonal linear discriminant analysis (DLDA), quadratic discriminant analysis (QDA), diagonal quadratic discriminant analysis (DQDA), naive bayes (NB), feed-forward neural network (FFNN) and classification and regression tree (CART) in an attempt to enhance the diagnostic accuracy of liver disorder and to reduce the inefficiencies caused by false diagnosis. The results demonstrated that CART had emerged as the best model by achieving higher diagnostic accuracy than LDA, DLDA, QDA, DQDA, NB and FFNN. FFNN stood second in comparison and performed better than rest of the classifiers. After evaluation, it can be said that the precision of a classification algorithm depends on the type and features of a dataset. For the given dataset, decision tree classifier CART outperforms all other linear and nonlinear classifiers. It also showed the capability of assisting clinicians in determining the existence of liver disorder, in attaining better diagnosis and in avoiding delay in treatment. Keyword-Liver disease diagnosis; classification algorithms; classification and regression tree; linear discriminant analysis; quadratic discriminant analysis; naïve bayes classifier; feed-forward neural network; computational biology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Early Prediction of Gestational Diabetes Using ‎Decision Tree and Artificial Neural Network Algorithms

Introduction: Gestational diabetes is associated with many short-term and long-term complications in mothers and newborns; hence, the detection of its risk factors can contribute to the timely diagnosis and prevention of relevant complications. The present study aimed to design and compare Gestational diabetes mellitus (GDM) prediction models using artificial intelligence algorithms. Materials ...

متن کامل

Using Data Mining Techniques for Intelligent Diagnosis of Severity of Depressive Disorder

Introduction: Implementing a method that can help individuals diagnose or prevent mental disorders can be an important step in preventing and controlling these disorders especially in the early stages. The objective of this research was to apply data mining techniques for intelligent diagnosis of severity of depressive disorder. Method: The present applied research was carried out by going to a...

متن کامل

Comparison of Machine Learning Algorithms for Broad Leaf Species Classification Using UAV-RGB Images

Abstract: Knowing the tree species combination of forests provides valuable information for studying the forest’s economic value, fire risk assessment, biodiversity monitoring, and wildlife habitat improvement. Fieldwork is often time-consuming and labor-required, free satellite data are available in coarse resolution and the use of manned aircraft is relatively costly. Recently, unmanned aeria...

متن کامل

Steel Buildings Damage Classification by damage spectrum and Decision Tree Algorithm

Results of damage prediction in buildings can be used as a useful tool for managing and decreasing seismic risk of earthquakes. In this study, damage spectrum and C4.5 decision tree algorithm were utilized for damage prediction in steel buildings during earthquakes. In order to prepare the damage spectrum, steel buildings were modeled as a single-degree-of-freedom (SDOF) system and time-history...

متن کامل

Using Data Mining Techniques for Intelligent Diagnosis of Severity of Depressive Disorder

Introduction: Implementing a method that can help individuals diagnose or prevent mental disorders can be an important step in preventing and controlling these disorders especially in the early stages. The objective of this research was to apply data mining techniques for intelligent diagnosis of severity of depressive disorder. Method: The present applied research was carried out by going to a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016